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1. Summary of results for low temperature surface plasmon mediated GaN growth

There has been no changes since our last update on 8/31/14. The award was on a no cost
extenion while we were waiting for the result of the renewal (which was not funded).

* We can now grow 50 nm thick films of oxygen-doped GaN at room temperature; this
was achieved by increasing the repetition rate of the ultraviolet pulsed laser used for
surface plasmon-mediated atomic nitrogen formation from 1 Hz - 20 Hz. These 20 Hz
‘high repetition rate’ samples are a significant step beyond our work reported in June,
where few-monolayer films (characterization reported here) were grown by 1 Hz low
repetition rate laser growth.

* Despite oxygen contamination in the GaN film, XPS shows that the low temperature
GaN films have a valence state profile for nitrogen similar to that seen in commercial
GaN films.

e Oxygen contamination in the GaN films is limited by leaks in the vacuum seals in our
present growth chamber (base pressure ~2x10” Torr); we believe that with some
chamber modifications and additional pumping, base pressures in the ~10° Torr or
below pressure range could be achieved, and that this would allow us to overcome the
oxygen contamination of the GaN films.

2. Characterization of low-repetition rate growth samples

During our last update in June, we reported the growth of mixed gallium oxide/GaN
samples that had a N:0:Ga ratio of 1:8:4. At that time, our results indicated that our surface
plasmon mediated GaN deposition process had generated GaN compounds, but the presence
of ambient oxygen affected the purity of those samples.

Figure 1: TEM cross section image of GaN/Ga,0s film grown on gold/Si substrate.

Since then, we have worked on TEM imaging of the 1:8:4 GaN samples. Figure 1 shows
a TEM image of the GaN sample grown at a low laser repetition rate of 1Hz, which we
previously reported to result in a mixed composition of GaN/Ga,0s. The TEM sample is
prepared by focused ion beam (FIB) milling a cross-section of the GaN film and lifting out the
milled cross-section onto a TEM holder. Further FIB was performed to thin the cross section to
electron transparency to facilitate TEM observation. The cross section shown here indicates a
GaN/Ga,0s layer < 10 nm thick. However, energy dispersive X-ray spectroscopy (EDS) analysis of
this layer has shown this layer has a Ga to Pt ratio of 1:1, which indicates that it is difficult to



distinguish the thin GaN film from the Pt film deposited after growth as part of the FIB
fabrication procedure. (The Pt deposition is used a capping layer to protect the GaN film surface
from lon beam damage during the FIB process).

3. Growth and characterization of high-repetition rate growth samples

In order to grow thicker GaN films and minimize oxygen contamination, we increased
the flux of elemental Ga and atomic N by increasing the Ga effusion cell flux and pulsed laser
repetition rate for atomic nitrogen formation from 1 Hz to 20 Hz, respective. optimize the
relative flux of elemental Ga and plasmonically dissociated hydrazine in our growth chamber for
the formation of higher purity GaN films, by tuning the UV laser repetition rate. The film growth
rate varied from 0.2 nm/sec to 0.5 nm/sec. Using this approach we have been able to grow
optically transparent GaN samples up to ~50nm thick (thickness characterized by profilometry)
at a laser rep rate of 20 Hz. Our GaN film samples are nanocrystalline, as shown in the scanning
electron microscope image of Figure 2.

Figure 2: SEM image of surface of GaN film grown on gold substrate at laser repetition rate of
20 Hz.

Figure 3: XPS characterization at nitrogen 1s of (a) GaN film grown on gold substrate at 20 Hz (b)
commercial GaN crystal on silicon wafer.

Figure 3a shows XPS characterization near the nitrogen 1s binding energy for the GaN
film grown on a gold substrate at a laser repetition rate of 20 Hz, in comparison with XPS
characterization of a commercial MOCVD-grown GaN film grown on a silicon (001) wafer



(Figure 3b). Our GaN sample and commercial GaN crystal shows similar nitrogen 1s binding
energy profiles. The peak fitting indicates that there are three different nitrogen containing
chemical bond formation. The peak at 398.3eV, which is at the same energy as nitrogen 1s
binding energy in standard data base, is attributed to adsorbed molecular nitrogen on the
sample surface. The other two peaks shifted to lower binding energy are due to chemical bond
formation of atomic nitrogen with other elements. Compared to the GaN sample previously
grown at 1 Hz, which only presented a small shoulder at lower binding energies, the films
grown at 20 Hz exhibit a significant improvement in terms of nitride chemical bond formation.

Figure 4: XPS characterization at gallium 2p3/2 of (a) GaN film grown on gold substrate at 20 Hz (b) commercial
GaN crystal on silicon wafer.

Figure 4 a and b shows XPS characterization near the Ga 2p3‘/2 binding energy. Comparing our
GaN sample with commercial GaN crystal, the peak at 1118.7eV is consistent with a valence
state change for GaN formation (and possibly also Ga,03; formation). The peak at 1116.6eV
indicates that we still have 8.6% Ga present, suggesting that the Ga effusion cell flux was
slightly too high to enable full reactive compound synthesis. To be more quantitative about
sample oxidation, we also studied oxygen 1s binding energy. From the oxygen 1s peak analysis,
we can conclude that the oxygen content is definitely higher in our GaN sample. The peak at
532.7eV is attributed to adsorbed oxygen molecules on the surface. We note that in our
nanocrystalline GaN films, there is greater surface area for adsorption of oxygen molecules than
on the crystalline GaN film/Si wafers. The peak at 531.5eV in Figure 5a may be attributable to
Ga,0;5 formation, which is not observed the GaN film/Si spectra in Figure 5b.

We note that XPS characterization only probes the elemental composition of the films
surface within the <10nm electron escape depth for photoemission. In order to study the film
stoichiometry at greater depth, we also performed energy dispersive X-ray spectroscopy (EDS)
characterization. Table 1 shows comparison of the relative gallium, nitrogen and oxygen
content in our GaN sample compared to commercial GaN wafer. Even though XPS
characterization shows close chemical composition profile of our GaN sample and the
commercial GaN wafer, EDS characterization indicates that our bulk content has much more
oxygen than GaN crystal. The similarity could be attributed to higher-than-ideal growth
chamber pressure. Known sources of oxygen contamination include an oxygen leak through the



cold stage used for cryogenic adsorption of hydrazine, so we are unfortunately spuriously cryo-
pumping oxygen onto our cold stage, in addition to hydrazine.

Figure 5: XPS characterization at oxygen 1s of (a) GaN film grown on gold substrate at 20 Hz (b) commercial GaN
crystal on silicon wafer.

Atomic % Gallium Nitrogen Oxygen
GaN film sample 29.6 29.9 30.5
Commercial GaN/Si wafer 50.4 41.8 7.8

Table 1: EDS data of the GaN film grown on gold substrate at 20 Hz versus commercial GaN wafer

We can conclude from characterization of the high repetition rate GaN samples that
improvement the GaN film stochiometry is facilitated by growth at a higher laser repetition rate,
enabling film deposition to compete with ambient contamination. Moving forward, our goal is
to achieve a growth chamber pressure than can enable high purity GaN films to be grown by
reducing the oxygen content in the bulk of our films. This will require some chamber
modifications to seal leaks and will also require additional pumping. Further steps to improve
film quality might include in situ surface treatment of the growth substrate prior to film
deposition to eliminate adventitious contaminants from the gold-coated substrate surface, so
as to better initiate stoichiometric GaN growth rather than Ga,03; growth. Despite the fact that
our films still contain oxygen contamination at present, we have been able to demonstrate
growth of thick (~ 50 nm) films of oxygen-doped GaN at room-temperature, and thus it appears
that the surface plasmon-mediated growth process may be capable of stoichiometric GaN film
formation at room temperature if oxygen doping can be eliminated.



